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Abstract---The propagation of a cleavage seam is modelled by a two-dimensional finite element technique, which 
extends Fletcher and Pollard's elastic 'anticrack' theory to a composit ion-dependent viscous rheology. The 
viscous solution is obtained by repeated solutions of the force equilibrium equations at successive time steps, with 
the viscosity of each element varying as a function of its strain history. The rhcology assumed follows previous 
modelling by Robin: the rock is modelled as a 'quartz ' - 'mica '  mixture in which deformation proceeds by diffusion 
of 'silica'. The viscosity of an element depends on its proportion of 'quartz' ,  varying from a minimum for 
intermediate 'quartz ' - 'mica '  mixtures to higher values for either pure 'quartz'  or pure 'micas'. As a result of its 
incremental strain, an element either loses or gains 'quartz'  (i.e. volume), and therefore changes its viscosity for 
the next strain increment. The system can be either open ('silica' escapes the system; all individual elements lose 
volume) or closed (individual elements may gain or lose volume but the total volume of the system is preserved). 

At the start of a run, a nucleus of a cleavage seam is introduced as a thin layer of elements with a lower viscosity 
(corresponding to a higher 'mica' content) than the rest of the rock. The stress concentration at the tip of the seam 
leads to a weakening of the elements in front of it through loss of 'quartz' :  this results in crack propagation, for 
both open and closed systems. All other parameters being equal, the "speed" of propagation is greater for open 
systems than for closed ones. 

INTRODUCTION 

SPACED cleavages of tectonic origin have been observed 
and studied in rocks for more than 100 years (Sorby 
1863), and 'pressure solution'* is commonly believed to 
be an important part of the process leading to their 
development. However, many aspects of spaced cleav- 
age formation remain enigmatic. We know little, for 
example, about the rate of the process under geological 
conditions, the parameters which determine cleavage 
spacing and cleavage morphology, the resulting rheo- 
logical behaviour of a polymineralic rock deforming by 
pressure solution. Experimental work has not repro- 
duced spaced pressure solution cleavage, perhaps be- 
cause of the long time required in nature for detectable 
diffusion transfer. The present study is concerned with 

*Pressure solution, a geological term, describes a class of defor- 
mation mechanisms in rocks which could be more accurately called 
stress-induced diffusion transfer. In metals and ceramics, stress- 
induced diffusion transfer is mainly called Nabarro-Herring creep, and 
Coble creep, two end-member  models. Unlike in Nabarro-Herr ing 
creep and Coble creep, the polymineralic nature of a rock plays an 
important role in the observation of the phenomenon;  the different 
and contrasting mobilities of the various chemical components ,  and 
the possibility of metamorphic reactions, also affect the process and its 
observation. Finally, the 'humidity'  prevalent under the conditions of 
deformation in the Earth 's  crust is widely believed to influence the 
state of the grain boundaries along which diffusion proceeds and to 
catalyse the transfer mechanisms. In order  to distinguish what happens 
in rocks from what happens in artificial materials, the traditional name 
of pressure solution is retained. 

modelling the propagation of one pressure solution 
cleavage seam in rock which deforms by stress-induced 
diffusion transfer. It is an extension of the anticrack 
model of Fletcher & Pollard (1981), taking into account 
a composition-dependent rheology such as proposed by 
Robin (1979) and the possible transfer through the rock 
of at least one chemical component such as discussed by 
Fletcher (1982). 

Fletcher & Pollard (1981) have pointed out that the 
cleavage seam could be viewed as a propagating anti- 
crack: the compressive stress concentration at the tip of 
this anticrack is responsible for dissolution of material 
and consequent propagation of the cleavage. In order to 
model the stress concentration at the anticrack tip, 
Fletcher & Pollard (1981) assumed that the rock behaves 
elastically, except along the crack itself where pressure 
solution occurred. Pressure solution along the anticrack 
was modelled by taking the pressure to be zero along its 
walls. This implies instant and totally effective pressure 
solution along the walls of the anticrack; mechanically, 
the cleavage seam thus remains a 'hole' throughout the 
deformation. With these two assumptions, these authors 
can, by changing the signs, apply the results of elastic 
crack theory. As Fletcher & Pollard (1981) argue, an 
elastic material, with exclusive localization of pressure 
solution along discrete seams, appears to be an adequate 
model to describe styiolite evolution in shallowly de- 
formed rocks. But pelitic rocks which deform, and 
develop a cleavage, under mesozonal metamorphic con- 

953 



954 F. FUETEN and P.-Y. F. ROBIN 

ditions are not well modelled by anticracks, because: (1) 
the cleavage seams, rather than being discrete and 
negligibly thin surfaces, may make up a significant 
volume fraction of the rock; and (2) pressure solution is 
likely to be an important deformation mechanism 
throughout the rock, not just along thin (or thick) 
cleavages. 

We present here a model which does describe the 
propagation of a cleavage seam of finite thickness within 
a viscous rock deforming by pressure solution. The rock 
is modelled as a 'quartz '- 'mica'  mixture in which the 
deformation proceeds in significant part by diffusion of 
'silica'. The viscosity of a small volume of rock depends 
on its modal proportions and varies during deformation. 
The model is self-consistent in that the changes in press- 
ure near the cleavage surface are calculated conse- 
quences of an assumed composition-dependent viscosity 
and of the strain history, and thus need not be imposed 
separately. 

The heterogeneous deformation associated with 
the propagation of the cleavage seam is modelled 
numerically by a finite element technique in which a 
'small volume of rock' is represented by an element. An 
element is small enough for the assumptions of uniform 
stress and strain within it to be acceptable, and it 
therefore has a uniform viscosity. But an element is also 
large enough compared to the mineral grains constitut- 
ing the rock to be assigned a meaningful and continu- 
ously variable modal mineral composition. The evol- 
ution with time of the cleavage seam is achieved by 
iterations of the finite element program which allow the 
individual elements to change their viscosities through- 
out the deformation. 

COMPOSITION-DEPENDENT VISCOSITY 
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A dependence of the rheological properties of a 
homogeneous volume of rock on its composition is a 
basic fact of geology. For a rock exhibiting a cleavage, 
one would expect different rheological behaviours for 
cleavage and lithons. For their anticrack model of press- 
ure solution, Fletcher & Pollard (1981) assume an ex- 
treme rheological dependence: a rock is elastic and 
strong outside of the seam, but it 'collapses', i.e. loses all 
strength, along the seam. In contrast, Robin (1979) 
noted that a creep strength which varies continuously 
with the modal composition of the rock: (1) was consist- 
ent with abundant petrographic observations of compe- 
tency contrasts in rocks; (2) could account for the 
development of tectonic segregation layering; and (3) 
would be expected in rocks deforming by pressure 
solution of one mineral, e.g. quartz, if that pressure 
solution was somehow enhanced by the presence of 
another mineral, e.g. clay minerals, or micas. As 
pointed out by Robin (1979), silica mobility may simply 
be enhanced by easier diffusion through the phyliosili- 
cate structures, or along cleavage planes lined with 
adsorbed H20. Petrographic observations, the earliest 
being those of Heald (1956) on pressure solution be- 

Fig. 1. (a) Dependence of viscosity on modal "mica' fraction, F (after 
Robin 1979, fig. 1); (b) dependence of viscosity used in this study. 
Competency ratio is rhJr/mi,. The grey-scale for the mica fraction given 

at the bottom corresponds to the grey tones in Figs. 6 and 7. 

tween grains, are themselves strong arguments for such 
a catalytic action of phyllosilicates. 

In our study, it was considered sufficient to use 
Robin's (1979) model rock, made up of only 'quartz' and 
'mica'. Its modal composition can then be described by a 
single parameter, F, the modal fraction of 'mica'. Its 
variable creep strength can be represented by a visco- 
sity, r/, which varies with F as in Fig. l(a) (from Robin 
1979, fig. 1). Such a curve states, in effect, that a pure- 
'quartz' rock is competent,  presumably because it does 
not contain the 'micas' which are necessary to catalyse 
pressure solution; a pure-'mica' rock is also competent,  
presumably because there is no 'quartz' around and 
therefore little or no pressure solution; in contrast, rocks 
of some intermediate composition are relatively weak. 

In the absence of any detailed theory or model of how 
'micas' might enhance the stress-induced mobilization 
and transfer of silica, or of models of evolving grain 
contacts, contact pressures, etc., one cannot propose a 



Finite element modelling of pressure solution cleavage 955 

particular, specific form for the curve of Fig. l(a).  For 
the results presented in this preliminary study we have 
used a function of the form 

7] = YImin[1 "4- ( C  - 1)(Fmin/F- 1)21, (1) 

represented in Fig. l(b). Fmi . is the 'mica' fraction for 
which the viscosity is minimum; r/mi, is that minimum 
viscosity. C is the contrast between the initial viscosity, 
r/o, of most of the rock, with a 'mica' fraction F0, and the 
minimum viscosity, r/mi,; specifically, C = r/o/r/rain. 
Equation (1) is such that F 0 = 0 . 5 F m i  n. In this study, the 
parameters are: C = 100, Fmi, = 25%, and Fo = 12.5% 
(Fig. lb). 

R H E O L O G Y  AND FINITE ELEMENT 
IMPLEMENTATION 

Viscous solution 

A solution to a viscous flow problem can be obtained 
by iterating successive stress-strain-increment solu- 
tions, each being formally similar to an elastic stress- 
strain solution (Appendix, equations A2 and A3). Thus 
the deformation of a rock with a viscosity ~/= 102o Pa s 
(= 1020 kg m -1 s -1 = 1019 poise), over a time interval 
6t = 109 s ( -31 .7  years), is equal to the elastic response 
of a solid with a shear modulus G = 1011 Pa (1 Mbar). In 
the usual modelling of viscous flow, the material is taken 
to be incompressible. Here, in contrast (see Appendix), 
the material is allowed to lose or gain volume during 
deformation, thus simulating pressure solution. In the 
case when the system is not reinflated (see below), there 
can only be a loss of volume, that loss being proportional 
to p = (Oxx + Ovy)/2. When the system is reinflated, the 
silica loss or gain is a linear function ofp  (see Appendix). 
In an important paper, Fletcher (1982) has introduced 
the concept of coupling of viscous flow and diffusional 
transport, and much of his discussion (particularly pp. 
275-280) is relevant to the present contribution. 

Numerical implementation 

A two-dimensional finite element program, presented 
by Cheung & Yeo (1979, chapter 2), andusing triangular 
elements (Figs. 2-8), was used as our basic program. A 
viscous flow solution was obtained by iterating success- 
ive stress-strain-increment solutions, each step yielding 
a strain after a time increment 6t. Strains for any single 
increment must be relatively small in order to yield a 
proper viscous flow solution. The nodal displacements 
from one iteration are added to the previous nodal co- 
ordinates, and the stress-strain solution is solved again 
for the new positions. The system retains no memory of 
the previous step. 

Cheung & Yeo's (1979) program was modified (1) to 
implement these iterations and (2) to permit the 
composition-dependent variations of viscosities. The 
area, A, of each element is used to calculate its modal 
fraction, F, and therefore, through equation (1), to 

calculate its viscosity, r/, used in the next iteration. 
Specifically, if Fo is the initial 'mica' modal fraction of an 
element, and A0 its initial area, its 'mica content'  is 
FoAo. Since only 'silica' is mobile, this 'mica content'  of 
an element does not change during deformation. After 
deformation of an element to area A, its 'mica' modal 
fraction, used in equation (1), is therefore given by 
F = FoAo/A. 

Migration of  'silica' 

Two end-member possibilities have been modelled: 
an open system, in which the 'silica' lost by each element 
is lost from the system, and a closed system, in which the 
total volume (and thus the total 'silica' content) of the 
system stays constant while individual elements are free 
to change. 

In the open system, all elements lose volume. As is the 
case with standard modelling of viscosity, nodal co- 
ordinates resulting from an iteration are used directly as 
the input nodal co-ordinates for the next iteration. 

The closed system is 'reinflated' at each iteration. This 
is achieved by calculating the new areas of all elements 
after the finite element calculation (see Appendix, 
equation A7). The new area of the system, which is the 
sum of the areas of all its elements, can be compared 
with its initial area. All nodal co-ordinates are then 
expanded by an isotropic dilation to reconstitute that 
initial area. Thus, elements which enjoy a greater frac- 
tional loss of area than the average area loss of the 
system still lose area, i.e. 'silica', after reinflation, 
whereas those elements with a lesser fractional area loss 
than the average prior to reinflation, end up larger, i.e. 
more 'quartz'-rich than before the iteration. 

In his analyses of layer-parallel compression, initial 
bending and folding, Fletcher (1982) modelled diffusion 
explicitly, and demonstrated the importance of a charac- 
teristic distance ~flfl = V ~ a ,  where a is proportional to 
the diffusion constant D. In the present work, however, 
diffusion is only taken into account implicitly. The open 
system corresponds to a situation in which X/tiff is much 
greater than I, the linear dimension of the system. The 
closed system can be taken as crudely modelling the case 
where ~flfl/l~ 1. 

Finite element grid and initial cleavage seam 

We model the development of an isolated seam at the 
centre of a homogeneous volume of rock, undergoing 
plane strain. As Fig. 2 shows, the symmetry of the 
system is such that we only need to model one quarter of 
it. The grid used consisted of 480 elements loaded along 
one side. The symmetry of the system was implemented 
by specifying no x-displacement for one edge and no 
y-displacement for another (Fig. 2). 

The initial cleavage seam nucleus is introduced by 
assigning to 36 elements a greater initial 'mica' fraction, 
and therefore a lower viscosity, than those of the rest of 
the rock. The initial 'mica' fraction, F~ea, was F~eeo = 
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Fig. 2. The finite element grid used is the area made up of triangular 

elements. The initial cleavage is given by the hatched area. 

0.75Fmi n = 1.5/:0. For  our  chosen contrast,  C = 100, the 
resulting viscosity of the nucleus was 12% of that of the 
rest of the rock and equal to 12 ~/min (Fig. lb) .  

The loads were selected such that the strains of all 
elements in the first iteration were less than 10%. For  
our arbitrarily selected viscosity of the weakest elements 
of 10 TM Pa s, this implies that Ao x 6t <-- 1017 Pa s (i.e. 
- 1  kbar x 30 years, or 100 bar x 300 years). 

RESULTS 

Choice of initial parameters 

Values for the initial parameters,  the contrast C and 
the initial 'mica' fraction in the cleavage nucleus, Fseed, 
were determined by experiments with the open system. 
Better  results were obtained with a contrast C = 100 
than with C = 10 or 20. A viscosity contrast of 100 is 
not unrealistic: contrasts of between 1 and 2 orders 
of magnitude have been used in modelling of folds 
(Dietrich 1970). 

For an initial 'mica' fraction Fseed larger than Fo by 
only 20%, elements in the open system collapsed before 
much differentiation had occurred. As the total system 
loses volume, large viscosity ratios between cleavage 
seam and matrix need to be established early, before the 
matrix loses too much strength itself. While such col- 
lapse would not occur with a closed system, the same 
parameters were used for both to allow for comparisons. 

Stress distribution around the cleavage seam 

The stress distribution among the finite elements is 
that expected around an anticrack. It is best seen after a 
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iteration 5 (closed system) 
Fig .  3. P r i n c i p a l  s t r e s s e s  in  480  e l e m e n t s  a f t e r  t h r e e  i t e r a t i o n s .  T h e  
l e n g t h s  o f  t h e  l i n e  s e g m e n t s  a r e  s c a l e d  p r o p o r t i o n a l l y  t o  t h e  m a g n i -  

t u d e s  o f  t h e  p r i n c i p a l  c o m p r e s s i v e  s t r e s s  c o m p o n e n t s .  

few iterations, when the viscosity contrast between the 
elements ahead of the tip of the cleavage seam and the 
developing seam itself is at its greatest (Fig. 3). Principal 
stress trajectories are deflected around the tip of the 
seam. The seam itself, and the region next to it, on the 
other  hand, are under low relative stress, sheltered by 
the low strength of the cleavage. Because of the high 
mean stress in the elements ahead of the tip of the seam, 
these elements lose the most volume (Fig. 4). The  
volume loss is, in effect, a loss of 'quartz ' ,  and increase in 
'mica' fraction, F, and will result in a weakening of the 
element in the next iteration. 

Cleavage evolution 

The propagation of  the cleavage seam is a direct 
consequence of the above steps: since the elements 
ahead of the tip of the cleavage seam are under the 
highest mean stress, they lose the most "quartz' and 
weaken faster than the bulk of the rock. They thus 
become progressively incorporated into the cleavage. 

As elements in the cleavage seam lose more and more 
'quartz ' ,  their 'mica' concentration brings them on the 
right-hand side of the curve of Fig. 1, and the seam 
becomes stronger. Weakened elements at the front of 
the cleavage tip now cause the stress concentration (Fig. 
5). This concentration is not as pronounced as in Fig. 3, 
because the elements which support it have already 
become weaker. The source of the stress concentration 
hence migrates, leaving cleavage behind it and dissolv- 
ing 'quartz '  in front of it. Readers familiar with lattice 
dislocation motion may note that this propagation of the 
tip of the cleavage is the continuous equivalent of the 
climb of an edge lattice dislocation. 

The evolution of both closed and open systems (Figs. 
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iteration 15 (cLosed system) 

Fig. 4. Surface showing the fractional changes in area of the elements, 
AA/A = (o~ + o3)/r/, after 15th iteration. Peak is at the cleavage tip. 
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6a-g and 7a-c) are discussed in some detail below. In all 
figures (Figs. 6a-g and 7a-c) the 'mica' fraction is rep- 
resented by variable grey tones according to the grey 
scale shown in Fig. l(b). The overall deformation of the 
closed and open systems can be seen in Figs. 8(a) & (b). 
As expected, the constant-volume of the closed system 
(Fig. 8a) averages to approximately pure shear, whereas 
the deformation of the open system (Fig. 8b) is best 
described as a compaction strain. 

iteration 15 (closed system) 
Fig. 5. Principal stresses of elements at 15th iteration. Note how 
principal stress directions are deflected around elements in front of the 

original cleavage plane. 

hand side is now three-rows wide, i.e. thicker than the 
original two-row nucleus. 

Evolution of the open system 

Evolution of the closed system 

At the initial stages of the deformation, the volume of 
elements within the seam decreases rapidly. At the fifth 
iteration (Fig. 6b), these elements are already reduced 
to less than 50% of their original volume. The volume 
next to the seam is sheltered from the differential stress 
by the seam, and is consequently less deformed. When 
the system is reinflated, these elements increase their 
'quartz' fraction, and appear as white elements in Fig. 6. 
As shown in Fig. l(b), all white elements have less than 
12.2% 'mica', compared to their original fraction, F0, of 
12.5%. and have accordingly increased their compe- 
tency. By the 10th iteration (Fig. 6c) the volume of the 
cleavage has been reduced further and the number of 
white elements has increased. 

By the 15th iteration (Fig. 6d), a significant increase in 
the "mica' fraction has occurred ahead of the original 
nucleus: in effect, the cleavage has propagated. As more 
"silica" is dissolved at, and in front of, the cleavage, 
which has to be distributed across the system, more 
elements increase their 'quartz' fraction. The defor- 
mation continues by propagating the cleavage further, 
and by enriching the 'quartz' content of the lithon (Figs. 
6e-g). 

By the 30th iteration (Fig. 6g), the original nucleus has 
been reduced to pure 'mica'. The cleavage, defined by 
elements reduced to less than 50% of their original area, 
i.e. having more than 25% 'mica', has propagated all the 
way to the right-hand side; most have in fact more than 
40% mica. Outside the cleavage, most elements have 
gained sufficient 'silica' to dilute their 'mica' fraction to 
less than 12.2%. Note that the cleavage on the right- 

Results of the first iteration (Fig. 7a) are not signifi- 
cantly different from those of the closed system. By the 
fifth iteration (Fig. 7b), the cleavage seam has a greatly 
reduced volume, and weakening has occurred in five to 
six rows in front of it. Since the 'silica' lost by each 
element is lost from the system, no element can increase 
its 'quartz' fraction. By the 10th iteration (Fig. 7c), a 
one-row wide cleavage has propagated half way toward 
the right-hand-side of the system. All the elements in the 
system have increased their mica fraction to more than 
18%, except for an area adjacent to the cleavage plane. 
The location of this sheltered area, with a 'mica' fraction 
of 17%, is the same as that of the 'quartz'-rich areas in 
Figs. 6(b) & (c). Beyond the 10th iteration, the evol- 
ution becomes unrealistic as the 'mica' fraction in the 
cleavage becomes greater than 1. 

CONCLUSION 

Our modified finite element modelling, combined 
with composition-dependent rheology, provides a 
reasonable description of the development of a cleavage 
seam. From an initial nucleus with a relatively small 
departure of its 'mica' fraction from that of the rest of the 
rock, the seam increased in both its 'mica' fraction and 
its length. With some differences, this development 
occurred in both open and closed systems. As one might 
expect, the cleavage seam grew 'faster' when the dis- 
solved 'silica' left the rock. The results agree in many 
ways with petrographic observations and expectations. 

(1) The stress concentrations around the cleavage 
plane were as expected from the considerations by 
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Fig. 6. (a)-(c). Evolution of the closed system. Mica fraction of elements is given by the grey-scale illustratcd in Fig. 1. 
(a) shows iteration 1. (b)-(g) correspond to iterations 5, 10, 15, 20.25 and 30, respectively. 

Fletcher & Pollard (1981). We tentatively interpret the 
high porosity and the fractures in the 'Process Zone '  
observed by Raynaud & Carrio-Schaffauser (1992, this 
issue) to be the result of the stress concentration at the 
tip of the propagating stylolite-anticrack. 

(2) An initial contrast of 100 between the viscosity of 
most of the rock and the minimum viscosity, V]min , were 
required to cause propagation in both systems, Such 

contrast is similar to that which leads to realistic-looking 
folds in the numerical experiments of Dietrich (1970). 

(3) The elements immediately adjacent to the most 
'mica'-rich elements in the seam became the most 
'quartz'-rich in the system, giving a very sharp boundary 
to the well developed cleavage seam. Sharp boundaries 
to pressure solution cleavage seams are commonly ob- 
served petrographically. 
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Fig. 7. Evolution of the open system. Mica fraction of elements  is given by the grey-scale illustrated in Fig. 1. (a) Shows first 
i teration ; (b) & (c) correspond to fifth and 10th iterations, respectively. 

(4) At the propagating end (right-hand side) of the 
seam, the zone in which elements lost 'silica' became 
thicker than the initial nucleus. This is analogous to the 
petrographic observation that cleavage seams become 
thicker, and more diffuse, at their terminations. 

We consider that these preliminary results have 
successfully simulated important features of cleavage 
propagation. This tentative success perhaps justifies the 
assumptions made in the model and the numerical 

procedure used. Both composition-dependent viscosity 
(Fig. 1) and the method used to couple deformation and 
transfer may enable us to investigate important prob- 
lems associated with cleavage development. Among 
such problems which we hope to examine are: the 
thickening of cleavage seams; the interaction and co- 
alescence of several cleavage seams; their spacing; the 
formation of Robin's (1979) equilibrium banding. A 
possible shortcoming of the methodology, at the present 
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(a) deformation of closed system REFERENCES 

i t e r a t i o n  I 

(b) d 
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j i t e r a t i o n  5 

L 
i t e r a t i o n  1 

Fig. 8. Overall deformation of systems. (a) Shape of grid of closed 
system at iterations 1, 15 and 30; (b) shape of grid of open system at 

iterations 1.5 and 10. 

stage, however, is that it appears to be difficult to 
simulate diffusion and diffusion range explicitly. Further 
work is required to try and remedy that. 

Acknowledgemen t s - -We  are grateful to R. M. Stesky for providing 
suggestions and guidance on the use of the finite element programme, 
and many discussions in the early stages of the work. Paula MacKin- 
non was a demanding reader whose comments helped improve earlier 
versions of the manuscript. The work was supported by National 
Science and Engineering Research Council of Canada Operating 
grants to both authors. Help from the computer centers at Brock 
University and at the University of Toronto, Erindale Campus is 
gratefully acknowledged. 

Cheung, Y. K. & Yeo, M. F. 1979. A Practical Introduction to Finite 
Element Analysis. Pitman, London. 

Dietrich, J. H. 1970. Computer experiments on mechanics of finite 
amplitude folds. Can. J. Earth Sci. 7, 467--476. 

Fletcher, R. C. 1982. Coupling of diffusional mass transport and 
deformation in a tight rock. Tectonophysics 83,275-291. 

Fletcher, R. C. & Pollard, D. D. 1981. Anticrack model for pressure 
solution surfaces. Geology 9,419-424. 

Heald, M. T. 1956. Cementation of Simpson and St. Peter sandstone 
in parts of Oklahoma, Arkansas and Missouri. J. Geol. 64, 16-30. 

Jaeger, J. C. 1962. Elasticity, Fracture and Flow. Methuen, London. 
Raynaud, S. & Carrio-Schaffhauser, E. 1991. Investigation of rock 

matrix structures in the controlled area of a stylolite. In: Terra Abs.  
(Suppl. 5 to Terra Nova 3, 32). 

Raynaud, S. & Carrio-Schaffhauser, E. 1992. Rock matrix structures 
in a zone influenced by a stylolite. J. Struct. Geol. 14, 973-980. 

Robin. P.-Y. F. 1979. Theory of metamorphic segregation and related 
processes. Geochim. cosmochim. Acta 43, 1587-1600. 

Sorby, H. C. 1863. Uber Kalkstein-Geschiebe mit Eindrucken. Neues 
Jb. Miner. 34, 801-807. 

APPENDIX 

The analytical and numerical solutions to boundary-value viscous 
flow problems are commonly solved by using the formalism of elastic 
rheology, and it is convenient to present the latter. The rheological 
equation of an isotropically elastic medium deforming in plane strain 
(e.g. Jaeger, 1962, p. 60, equations 8 and 9) is, in matrix form: 

01 .x  
~yy /=  I - , ,  011%,  I, (A1) __2_ 
~xyJ 0 " ' - -  "lJtflxyJ 

where E is Young's modulus and v is Poisson's ratio. If the elastic 
material is incompressible, i.e. v = 0.5, the rheological equation 
reduces to 

G, = 1 o11%, I. (A2) 
~] ~ o 2JLox~j 

We note that in this special case of an incompressible material, the 
determinant of the 3 x 3 elasticity matrix is zero: the matrix can 
therefore not be inverted. This means that one cannot uniquely 
determine the components of stress, specifically ox~ and Ory, from the 
components of strain. Only their difference, Oxx - ary, is unique; their 
actual values are commonly given in terms of the "floating' parameter, 
p = - (ox. , + t~vv)/2. Because of that non-uniqueness, incompressible 
materials commonly give difficulties in finite element programs, in- 
cluding in the program used in this work. 

The strain increment of an incompressible Newtonian viscous 
material deforming in plane strain during a time interval dt is similarly 
given by: 

r , - i  01Fo q 
2 1 - 1  1 c!11% I (A3) 

o o 2JLO,~ j 
As is the case for the elastic strain of an incompressible material, and 
for the same reason, this relation cannot be inverted to give unique 
stress components from the strain. The components of stress are 
therefore generally given in terms of the 'floating' pressure, p (see e.g. 
Jaeger, 1962, p. 71, equations 11 and 12): 

oxx + p = 2rlex~ 

O'~y + p = 2r/~yy (A4)  

Oxy = 2rlexy. 

In the present work, by contrast, the possible loss or gain of silica by 
a volume of rock make it eminently compressible. If an elastic material 
has a Poisson's ratio of 0, its elastic strain is 

= I_ 0 1 0 h o , . . , .  (A5) 
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Analogously, in the viscous material modelled here,  the strain incre- 
ment  during a time interval tSt is, prior to any eventual reinflation, 

~y~I=llo ~ OilOy, I (A6) 
E~] ~ 0 I j l~y J 

In the case of an open system, the volume lost during 6t is therefore 

6e.xx + 6eyy = (Oxx + tTyy)/r] -~ - 2p/~l. 

In the case of the closed system, a uniform isotropic strain is added 

everywhere to reinflate that system, and the total strain over the time 
interval 6t represented by one iteration is 

rl o oTVo  7 
~j r/Lo o ijLa~y j 

As explained in the main text, the isotropic reinflation strain, 6 e ' ,  is 
such that the total area of the system is reestablished to its value prior 
to the finite element calculation. 


